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Introduction: 
Diffusion-weighted imaging is often used to reconstruct white matter (wm) pathways between brain 
areas for in vivo brain connectivity. In this study, we investigate the reproducibility and the specificity 
of connectivity matrices [Hagmann et al, 2007] in cortical to cortical connectivity using probabilistic 
and deterministic local streamline tractography, seeding both from the whole white matter and from 
wm-grey matter (gm) interface.  
 
Methods: 
Diffusion-weighted images were acquired on 3 volunteers (V1, V2, V3) along 64 uniformly distributed 
directions using a b-value of 1000 s/mm2, a single-shot echo-planar imaging sequence on a 1.5 Tesla 
SIEMENS Magnetom (128×128matrix, 2 mm isotropic resolution, TR/TE 11000/98 ms) and a 
GRAPPA factor of 2. An additional b0 image was acquired in reversed phase-encode direction to 
correct for susceptibility-induced distortions using FSL [Andersson et al., 2003]. An anatomical T1-
weighted 1 mm isotropic MPRAGE (TR/TE 6.57/ 2.52 ms) image was also acquired. The whole 
sequence was repeated 4 times  (A1, A2, A3, A4) for each volunteer. 
The T1-weighted image was linearly registered to an upsampled b0 image using FSL/FLIRT 
[Jenkinson and Smith, 2001].  Freesurfer [Fischl et al., 2004] was then used to obtain the cortical 
parcellation from the registered T1-weighted image of 150 regions [Destrieux et al, 2009]. Each of the 
150 gm regions were merged with their associated wm region to compute the connectivity between 
pairs of regions (number of streamlines connecting 2 regions) using Dipy (www.dipy.org) [Garyfallidis 
et al., 2014].  
Fiber Orientation Distribution Functions from spherical deconvolution [Tournier et al., 2007] were 
used for tractography. Partial volume estimation maps from the T1-weighted image were obtained 
using FSL/Fast [Zhang et la., 2001] and used in the tracking process to enforce gm to gm connectivity  
[Girard et al., 2014]. Streamlines were generated seeding from both the wm mask using 5 seeds per 
voxel and the wm-gm interface using 10 seeds per voxel. This results in an average of 222,084 
streamlines connecting regions of the cortex using wm seeding and 172,772 streamlines using wm-gm 
interface seeding. Every connectivity matrices C are normalized to sum to 1. The difference between 2 
connectivity matrices is computed using ∑|C1-C2|/2. This can be interpreted as the fraction of 
streamlines connecting different regions in both matrices.  

We used the Dunn index (DI) [Dunn, 1973] to evaluate both the intra-subject similarity of the 
connectivity matrices and the inter-subject differences. DI is computed as the average distance of intra-
subject connectivity matrices over the average distance of inter-subject connectivity matrices.  
Results: 
 
Figure 1 shows example of connectivity matrices. Figure 2 shows the distances between each matrix of 
the 4 pipelines and Table 1 shows their associated DI. 
 
Connectivity matrices (see Figure 1) from all pipelines show consistency for both inter- and intra- 



subject distances (see Figure 2). Probabilistic tractography have a higher DI (1.63) than deterministic 
tractography (1.39). Interface seeding produces both a lower inter- and intra-subject distances than wm 
seeding. Furthermore, interface seeding is preferable to wm seeding since it limits the bias in the 
streamline distribution introduced by the over seeding in longer bundles [Girard et al., 2014, Hagmann 
et al., 2007]. Overall, the probabilistic wm-gm interface tractography has an average of 16.8% of 
streamlines connecting different brain regions for intra-subject reconstructions, 27.3% for inter-subject 
reconstructions. 
 
Conclusions: 
 
In this study, we showed that with the chosen acquisition scheme, probabilistic tractography pipelines 
produce connectivity matrices with the highest ratio of inter-subject distances to intra-subject distances. 
Moreover, we showed that connectivity matrices can be used as a tool to compare tractography 
algorithms in terms reproducibility and specificity. 
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