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ABSTRACT

We present a new tracking algorithm based on the full mul-

tidirectional information of the diffusion orientation distribu-

tion function (ODF) estimated from Q-Ball Imaging (QBI).

From the ODF, we extract all available maxima and then ex-

tend streamline (STR) tracking to allow for splitting in multi-

ple directions (SPLIT-STR). Our new algorithm SPLIT-STR

overcomes important limitations of classical diffusion tensor

streamline tracking in regions of low anisotropy and regions

of fiber crossings. Not only can the tracking propagate through

fiber crossings but it can also deal with fibers fanning and

branching. SPLIT-STR algorithm is efficient and validated on

synthetic data, on a biological phantom and compared against

probabilistic tensor tracking on a human brain dataset with

known crossing fibers.

Keywords: fiber tractography, diffusion tensor imaging

(dti), high angular resolution diffusion imaging (hardi), q-ball

imaging (qbi), orientation distribution function (odf).

1. INTRODUCTION

Due to limitations of the Diffusion Tensor (DT) [1] in regions

of multiple fiber crossings, classical DT-based tracking algo-

rithms [1, 2, 3] can follow false tracts. These limitations have

motivated recent research to generalize the existing diffusion

model with new higher resolution acquisition techniques such

as Diffusion Spectrum Imaging (DSI) [4], High Angular Res-

olution Diffusion Imaging (HARDI) [4], and Persistent Angu-

lar Structure (PAS)-MRI [5]. These reconstruction techniques

have been proposed to define functions having their maxi-

mum(a) aligned with the underlying fiber population(s) [6].

For instance, recent probabilistic tractography has been per-

formed using the PAS [5] function and using a HARDI-based

model [7] to deal with multiple fiber orientations.

In this paper, we focus on deterministic tractography and

use the diffusion orientation distribution function (ODF) from

QBI because it is model-free and it can be computed analyt-

ically and robustly with low computational cost [6, 8]. Re-

cently, [4, 9] have proposed a generalized streamline (STR)
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tracking algorithm based on the principal direction of the dif-

fusion ODF computed from DSI. In [10] the definition of

streamlines and tensor lines is united and it is used for trac-

tography on a field of high order tensor glyphs. In [11], a

multi-tensor local model of the data is used to extend the STR

algorithm. Moreover, to deal with more complex fiber config-

urations, [12] extended streamline tracking with a mixture of

Gaussian densities and similarly, [13] recently extended the

TEND model with a bi-Gaussian model. Finally, based on

the classical diffusion ODF reconstructed from QBI [4] and

the very recent regularized version of the diffusion ODF [14],

[15] proposes a streamline approach with curvature constraint

following all maxima to deal with fibers crossing.

In this paper, we propose another extension to streamline

tractography based on the full multidirectional information of

the ODF. The principal contribution is to consider the pos-

sibility of splitting tracts using all available ODF maxima in-

stead of a single direction. Hence, we extend classical stream-

lines [1, 2, 3] to allow for splitting in multiple directions. The

new algorithm is efficient and validated on synthetic data, on

a biological phantom and compared against probabilistic ten-

sor tracking on a human brain dataset with known crossing

and fanning fibers.

2. METHODS

2.1. ODF Estimation

Tuch [4] proposed QBI, where the ODF is estimated directly

from the raw HARDI measurements on a single sphere by the

Funk-Radon transform (FRT). We showed that this FRT could

be solved analytically, quickly and robustly [6, 8]. The key

idea is to express the HARDI signal as a spherical harmonic

(SH) series of order ℓ and to solve the FRT using the Funk-

Hecke theorem. The final ODF reconstruction, Ψ, at position

p and in direction (θ, φ) is

Ψp(θ, φ) =
ℓ∑

k=0

k∑

m=−k

2πPk(0)cm
k Y m

k (θ, φ), (1)

where Y m
k denote SH of order k and degree m, cm

k are the SH

coefficients describing the input HARDI signal and Pk is a

Legendre polynomial of order k. Note that it is also possible



to impose a Laplace-Beltrami regularization criterion while

estimating the SH coefficients cm
k . Here, we use this regular-

ization, which gives more robust fiber detection [6, 8].

2.2. Tracking

We extend the classical streamline techniques [1, 2, 3] based

on diffusion tensor principal direction to take into account

multiple ODF maxima at each step. We denote p(s) as the

curve parameterized by its arc-length. This curve can be com-

puted as a 3D path adapting its tangent orientation locally ac-

cording to vector field v. Hence, for a given starting point

p0, we solve p(t) = p0 +
∫ t

0
v(p(s))ds. The integration is

typically performed numerically with Euler or Runge-Kutta

schemes of order 2 or 4. In the Euler case, we have the dis-

crete evolution equation

pn+1 = pn + v(pn)∆s, (2)

where ∆s is a small enough step size to obtain subvoxel pre-

cision. A continuous linear, cubic, spline or geodesic [16]

interpolation of the vector field can be done at each step for

the subvoxel points. For seed point p0, for a given anisotropy

measure A that can be Fractional Anisotropy (FA), Gener-

alized FA (GFA) [4] or any other measure, for anisotropy

threshold taniso, for curvature threshold tθ, for

ExtractMax(Ψ, p) a function returning the list l of vector(s)

oriented along each ODF maximum(a) at point p, for size(l)
returning the size of list l and for lj representing the jth ele-

ment of list l, our algorithm can be described as follows:

(0) Estimate field of ODF, Ψ, with Eq. 1 as in [8]

(1) Set seed p0 and set v(p0) = argmax
u
Ψ(u)p0

(2) Update curve according to Eq. 2.

If A(pn) < taniso then STOP;

If
v(pn) · v(pn−1)

||v(pn)||||v(pn−1)||
> tθ then STOP;

Let l = ExtractMax(Ψ, pn). If size(l) > 1
then SPLIT curve; for i = 1 to |l|

do (1) with p0 = pn and v(p0) = li;

For the rest of the paper, DT-STR refers to this algorithm

using the DT principal eigenvector, ODF-STR refers to this

algorithm using a single ODF maxima that is the closest to

the incoming tangent direction of the curve, and SPLIT-STR

refers to this algorithm using all available ODF maxima.

2.3. Tracking Parameters

DTI estimation is done with least-squares using all diffusion-

weighted data altough a more complex and robust estimation

method can be used [16]. To extract ODF maxima, it is gen-

erally assumed that they are simply given by the local max-

ima of the normalized ODF ([0,1]), where the function sur-

passes a certain threshold (here, we use 0.5). We also use

taniso = 0.15 for FA in DT-STR and taniso = 0.05 for

DT ODF DT-STR

ODF-STR SPLIT-STR

Fig. 1. Tracking on a synthetic branching example.

GFA in ODF-STR and SPLIT-STR, curving angle threshold

tθ = 75◦, ∆s = 0.1, classical trilinear interpolation to obtain

ODF and DT at subvoxel precision, and Euler integration.

2.4. Synthetic and Real Data Acquisition

First, we use the multi-tensor model [6, 8] to generate the syn-

thetic data. We generate the diffusion-weighted signal, S,

S(ui) =
∑2

k=1

1

2
e−buT

i
Dkui +noise, where ui are the gradi-

ent directions on the sphere (a 3rd order tessellation is used),

Dk the kth DT with eigenvalues [300, 300, 1700]x10−6 mm2/s

(FA = 0.8), b = 3000 s/mm2, and noise is generated with

a complex Gaussian noise with a standard deviation of σ =
1/35, producing a signal to noise ratio (SNR) of 35. Then, we

use a biological phantom dataset obtained from a 1.5 T scan-

ner with 90 gradient directions and a b = 3000 s/mm2 [17].

Finally, we use a human brain dataset obtained on a 3 T scan-

ner, which has 1.7mm3 cubic grid and contains 116, 93x93

slices with 60 gradient directions and a b = 1000 s/mm2 [18].

3. RESULTS

Overall, we have two results: 1) SPLIT-STR is able to track

through fiber crossings and recover crossing, branching and

diverging fiber configurations and 2) SPLIT-STR and ODF-

STR are better than DT-STR in regions of fiber crossings be-

cause the principal direction followed is more accurate.

Fig. 1 shows the limitations and differences of DT-STR

results compared to the ODF-STR and SPLIT-STR results.

Tracking was started at the bottom of the branch in all cases.

Note that where DTs are prolate with principal direction not

agreeing with the true fiber orientations, the ODFs have mul-

tiple maxima that match with the underlying fiber population.

Hence, the path followed by DT-STR is wrong and follows a

false direction that takes it to the middle of the branch. Had

there been another structure behind the branching fibers, the



DT-STR

(0.05)

DT-STR

(0.15) ODF-STR SPLIT-STR

Fig. 2. Tracking on the biological phantom.
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Fig. 3. Tracking of the superior longitudinal fasciculus (slf).

tract could have easily leaked in the other structure and di-

verged. On the other hand, ODF-STR has the advantage of

following the right direction. If there are two possible orien-

tations, it goes in direction closest to its incoming direction.

Finally, SPLIT-STR splits and follows both ODF directions

when possible which recovers the full branching structure.

Fig. 2 shows that with a conventional FA threshold of

0.15, DT-STR is unable to go through the crossing. Lower-

ing the threshold to 0.05, DT-STR crosses but then steps out

of phantom structure in the upper left part of the path. ODF-

STR has no problem going through from both initialization

seeds and is able to complete a longer part of the tract, even

in the high curvature part. Finally, allowing the tracking to

split and follow all directions, SPLIT-STR recovers most of

the phantom structure.

The top left subfigure of Fig. 3 and 4 are the tracking ob-

tained from probabilistic DT tracking of Anwander et al [18].

They agree with Mori’s brain atlas [19]. We use these as gold

standard to compare our tracking output. First, in Fig. 3, the

tracking is started from only a single seed in the superior lon-

tr fibers [18] DT-STR

ODF-STR SPLIT-STR

Fig. 4. Tracking of the thamalic radiations (tr).

gitudinal fasciculus (slf). Note that DT-STR is unable to re-

cover the high curvature part of the fiber whereas ODF-STR

can. Moreover, SPLIT-STR can recover the splitting part at

the end of the slf. Then, in Fig. 4, the tracking is started from

four voxel seeds in the anterior thamalic radiation (tr). As ex-

pected, DT-STR stops in the area of high complexity whereas

ODF-STR is able to step through the crossings and recover

the posterior tr and corticopontine tract. Again, SPLIT-STR

is able to recover more by also splitting into the superior tr.

Overall, SPLIT-STR results qualitatively agree with the gold

standard and known cerebral anatomy.

4. DISCUSSION

We have introduced SPLIT-STR, a new q-ball multidirectional

tracking algorithm using all available ODF maxima. First, we

showed that choosing the principal direction of the ODF im-

proves tracking results in regions of crossing when compared

with the principal direction of the DT. It stops the tracking

from taking false directions. Second, by allowing tracts to

split SPLIT-STR recovers more complete fiber bundles. It is

thus possible to track fibers crossing and fanning. We have

validated and compared our results on bundles where tracts

were known in synthetic data, in a biological phantom and

in a brain dataset. However, more validation could be per-

formed on real data. This is a difficult problem with human

white matter as there is no ground truth.

Other questions remain for multidirectional tractography:

Should the tracking algorithm split as much as possible to re-

cover as much fiber structure as possible before clustering and

post-processing the tracts to separate them into bundles? Or,

should the tracking have a built-in scheme to differentiate the

different sub-voxel crossing possibilities and decide whether



or not a tract should be split? For instance, split in the case of

a branching bundle but not split in the case of a crossing fiber

because then it steps into a different fiber bundle. The prob-

lem of chosing the best spliting strategy could benefit from

any a priori information on the local geometry of the fibers.

Overall, SPLIT-STR overcomes limitations of DT-STR in

regions of low anisotropy and regions of crossing fibers. To

our knowledge, it is the first tracking method to use all avail-

able direction estimates from q-ball data at each step. We are

thus able to recover large amount of fiber bundles with com-

plex tissue architecture starting from only a few seed points.

Moreover, since ODFs are reconstructed from a fast and ro-

bust analytical QBI method, the algorithm is reliable with a

low computational cost. It is now important to look into prob-

abilistic tracking algorithm based on the full ODF to remove

the intermediate step of extracting ODF maxima.
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