
IMN-359

DŽcomposition/Reconstruction
en ondelettes 1D

Wednesday, November 24, 2010

3.2. 1D WAVELET PROCESSING 27

% Low/ High pass filtering followed by sub ! sampling.
a = subsamp l i ng (cconv (f , h)) ;
d = subsamp l i ng (cconv (f , g)) ;
% Up! sampling followed by filtering.
f 1 = cconv (upsamp l i ng (a) , r ever se(h)) + cconv (upsamp l i ng (d) , r ever se(g)) ;
% Check that we really recover the same signal.
d i sp (s t r ca t (([' Er r o r | f ! f 1 | / | f | = ' num2s t r (no rm(f ! f 1) / no rm(f))]))) ;

Matlab code 2: Filtering followed by sub-sampling: forward and backward. Input: signalf ,
outputs coarse and detail coe cients a, d.

Figure 3.6: Forward Þlter bank decomposition.

Fast wavelet transform algorithm. The fast wavelet transform (FWT) applies iteratively the
steps (3.14) and (3.15), starting from j = J where aJ = f is known. The FWT operates as follow:

Input: signal f ! CN .
Initialization: aJ = f .
For j = J, . . . , j0 " 1.

aj+1 = (aj ! ÷h) # 2

dj+1 = (aj ! ÷g) # 2

Output: the coe! cients { dj} j0 ! j<J $ { aj0 } .
Figure 3.7 shows the process of extracting iteratively the wavelet coe! cients. Figure 3.8 shows

an example of computation, where at each iteration, the coe! cients of aj and dj are added to the
left of the output vector. The code 3 implements this forward transform.

Figure 3.7: Pyramid computation of the coe cients.

The computational complexity of the FWT applied to a vector of N entries is
0!

j= ! log2 (N)

2j N(|h| + |g|) = O(N %(|h| + |g|))

operations. It thus has a linear complexity with respect to N, which is faster than the FFT
algorithm that has O(N log(N)) complexity. Furthermore, its complexity also increases with the
size of the Þlters.

Wednesday, November 24, 2010

3.2. 1D WAVELET PROCESSING 27

% Low/ High pass filtering followed by sub! sampling.
a = subsampling(cconv(f,h));
d = subsampling(cconv(f,g));
% Up! sampling followed by filtering.
f1 = cconv(upsampling(a),reverse(h)) + cconv(upsampling(d),reverse(g));
% Check that we really recover the same signal.
disp(strcat(([' Error | f ! f1 |/| f | = ' num2str(norm(f ! f1)/norm(f))])));

Matlab code 2: Filtering followed by sub-sampling: forward and backward. Input: signalf ,
outputs coarse and detail coe! cients a, d.

Figure 3.6: Forward Þlter bank decomposition.

Fast wavelet transform algorithm. The fast wavelet transform (FWT) applies iteratively the
steps (3.14) and (3.15), starting fromj = J whereaJ = f is known. The FWT operates as follow:

Input: signal f ! CN .
Initialization: aJ = f .
For j = J, . . . , j 0 " 1.

aj +1 = (aj ! ÷h) # 2

dj +1 = (aj ! ÷g) # 2

Output: the coefficients { dj } j 0 ! j<J $ { aj 0 } .
Figure 3.7 shows the process of extracting iteratively the wavelet coefficients. Figure 3.8 shows

an example of computation, where at each iteration, the coefficients of aj and dj are added to the
left of the output vector. The code 3 implements this forward transform.

Figure 3.7: Pyramid computation of the coe! cients.

The computational complexity of the FWT applied to a vector of N entries is
0∑

j = − log 2 (N)

2j N (|h| + |g|) = O(N %(|h| + |g|))

operations. It thus has a linear complexity with respect to N , which is faster than the FFT
algorithm that has O(N log(N)) complexity. Furthermore, its complexity also increases with the
size of the Þlters.

Wednesday, November 24, 2010

28 C H A P T E R 3. W A V E L E T P R O C E SSI N G

Jma x = l o g 2 (n)! 1 ; Jmi n = 0 ; f w = f ;
f o r j = Jma x : ! 1 : Jmi n

Co a r s e = s u b s amp l i n g (c c o n v (f w(1 : 2 ^ (j + 1)) , h)) ;
De t a i l = s u b s amp l i n g (c c o n v (f w(1 : 2 ^ (j + 1)) , g)) ;
f w(1 : 2 ^ (j + 1)) = c a t (1 , Co a r s e , De t a i l) ;

end

M at lab code 3: FWT algor i thm, the input is f and the output is fw that stores al l wavelet
coe! cients.

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.5

1

1.5

0

0.5

1

1.5

2

Figure 3.8: Wavelet decomposi t ion algor i thm.

Haar ReÞnement For the Haar wavelets, one has

φj,n =
1√
2

(φj! 1,2n + φj! 1,2n+1),

ψj,n =
1√
2

(φj! 1,2n − φj! 1,2n+1).

This corresponds to the Þlters

h = [. . . , 0, h[0] =
1√
2

,
1√
2

, 0, . . .],

g = [. . . , 0, h[0] =
1√
2

, − 1√
2

, 0, . . .].

The Haar wavelet transform algorithm thus processes by iterating averaging and di! erences:
I nput : signal f ∈ CN .
I ni t ial izat ion: aJ = f .
For j = J, . . . , j 0 − 1.

aj+1 [n] =
1√
2

(aj! 1[2n] + aj! 1[2n + 1]) ,

dj+1 [n] =
1√
2

(aj! 1[2n]− aj! 1[2n + 1]) .

Out put : the coe" cients { dj} j0! j<J ∪ { aj0} .

3.2.3 Inverse Wavelet Transform

A forward elementary step

aj! 1 ∈ R21! j
%−→ (aj , dj) ∈ R2! j

× R2! j

is an orthogonal mapping
||aj! 1||2 = ||aj ||2 + ||dj ||2.

The backward elementary step

(aj , dj) ∈ R2! j
× R2! j

%−→ aj! 1 ∈ R21! j

Wednesday, November 24, 2010

3.2. 1D W A V E L E T P R O C E SSI N G 25

! ! "#

! !

! $"#

$

$"#

!

! "#

Wavelet coe cients { dj [n] } j,n

0

0.2

0.4

0.6

0.8

1

! !"#

! !"$

!

!"$

!"#

Signal f d ! 7[n]

! !"#

! !"$

!

!"$

!"#

! !"#

!

!"#

d! 6[n] d! 5[n]

Figure 3.5: Wavelet coe! cients. Top row: all the coe! cients. Bottoms rows: zoom on the di" erent
scales

To identify the discrete wavelet transform of f with the continuous transform of f 0, we assume
a consistency of the sampling with the scaling function

! 0 ! n < N, f [n] = aJ [n] =
1

2J/ 2

!
f 0(t)! (t/ 2J " n)dt = #f 0, ! J,n $ (3.9)

Under this hypothesis, the detail coe cients dj of f 0 are computed from the discrete signal f using
a fast algorithm.

This hypothesis is questionable, since thesensor impulse responseh in (1.1) isgiven by the hard-
ware, and is likely to di ers from ! . I t is possible to account for this imperfect match by modifying
the values of f [n] prior to computing the wavelet coe cients, but in practice, the approximation
f [n] % #f 0, ! J,n $ is su cient.

Discrete signals and discrete wavelets. The wavelet coe cients depend linearly on both the
continuous and the discrete signals, and can thus be writ ten as

! J < j ! 0, ! 0 ! n < 2! j , dj [n] = #f 0, " j,n $= #f, ø" j,n $ (3.10)

where " j,n are the continuous wavelet atoms (3.1) and ø" j,n & CN are discrete wavelet vectors
deÞned implicit ly using this relation. This deÞnes a discrete wavelet basis of CN

{ ø" j,n } J<j ! 0, 0! n< 2! j ' { ø! 0,0 } (3.11)

where by convention ø! 0,0 = 1 /
(

N is the constant vector.
For large N , these discrete atoms resemble their continuous counterparts, but since they are

deÞned on a discrete grid, they cannot be generated by dilation of a single mother wavelet. They
however satisfy a translation relationship on the discrete grid

! 0 ! k < N, ø" j,n [k] = ø" j, 0[k " 2j n].

3.2.2 Forward Wavelet Transform
For now we assume that the wavelet function " and scaling function ! are given, and we derive

a fast iterative algorihtm. This section shows how to apply this algorithm without knowing in
closed form these functions.

Wednesday, November 24, 2010

Transformée inverse

3.3. 2D WAVELET PROCESSING 29

=!

Figure 3.9: Wavelet inversion in matrix format.

is thus the transposed of the forward mapping. This is shown using matrix notations in Figure 3.9.
The transpose of sub-sampling is the up-sampling operator, deÞned by

(a " 2)[n] =
{

a[k] if n = 2k,
0 if n = 2k + 1 .

The transpose of Þltering by÷h is Þltering by the reverse Þlterh. One thus has

aj ! 1 = (aj " 2) ! h + (dj " 2) ! g.

The inverse Fast wavelet transform iteratively applies this elementary step
Input: { dj } j 0 ! j<J # { aj 0 } .
For j = j 0, . . . , J + 1 .

aj ! 1 = (aj " 2) ! h + (dj " 2) ! g.

Output: f = aJ .
This process is shown using a block diagram in Figure 3.10, which is the inverse of the block
diagram 3.6. The code 4 implements this inverse transform.

Figure 3.10: Backward Þlterbank recomposition algorithm.

f1 = fw;
for j=Jmin:Jmax

Coarse = f1(1:2^j);
Detail = f1(2^j+1:2^(j+1));
Coarse = cconv(upsampling(Coarse,1),reverse(h),1);
Detail = cconv(upsampling(Detail,1),reverse(g),1);
f1(1:2^(j+1)) = Coarse + Detail;

end

Matlab code 4: Inverse FWT algorithm, the input is fw that stores all wavelet coe! cients and
the output is f1 .

3.3 2D Wavelet Processing

There is two ways to extends a 1D wavelet basis into a 2D basis. The simplest way, detailed in
Section 3.3.2, computes tensor products of wavelet functions. A more complicated way, detailed
in Section 3.3.3, makes use of three di! erent 2D mother wavelet functions, which enables wavelet
atoms with a square support.

Wednesday, November 24, 2010

3.3. 2D WAVELET PROCESSING 29

=

Figure 3.9: Wavelet inversion in matr ix format.

is thus the transposed of the forward mapping. This is shown using matrix notations in Figure 3.9.
The transpose of sub-sampling is the up-sampling operator, deÞned by

(a 2)[n] =
{

a[k] if n = 2k,
0 if n = 2k + 1.

The transpose of Þltering by ÷h is Þltering by the reverse Þlter h. One thus has

aj −1 = (aj 2) ! h + (dj 2) ! g.

The inverse Fast wavelet transform iteratively applies this elementary step
Input: { dj } j 0 ! j<J { aj 0 } .
For j = j0, . . . , J + 1.

aj −1 = (aj 2) ! h + (dj 2) ! g.

Output: f = aJ .
This process is shown using a block diagram in Figure 3.10, which is the inverse of the block
diagram 3.6. The code 4 implements this inverse transform.

Figure 3.10: Backward Þlterbank recomposi t ion algori thm.

f1 = fw;
for j=Jmin:Jmax

Coarse = f1(1:2^j);
Detail = f1(2^j+1:2^(j+1));
Coarse = cconv(upsampling(Coarse,1),reverse(h),1);
Detail = cconv(upsampling(Detail,1),reverse(g),1);
f1(1:2^(j+1)) = Coarse + Detail;

end

Matlab code 4: Inverse FWT algori thm, the input is fw that stores al l wavelet coe! cients and
the output is f1.

3.3 2D Wavelet Processing

There is two ways to extends a 1D wavelet basis into a 2D basis. The simplest way, detailed in
Section 3.3.2, computes tensor products of wavelet functions. A more complicated way, detailed
in Section 3.3.3, makes use of three different 2D mother wavelet functions, which enables wavelet
atoms with a square support.

Wednesday, November 24, 2010

Décomposition en ondelettes
de Lemarié

 2!9

 2!8

 2!7

 2!6

 2!5

Approximation

0 0.2 0.4 0.6 0.8 1
!20

0
20
40

t

f(t)

Fig. 7.7. A Wavelet Tour of Signal Processing, 3rd ed. Wavelet coefficients dj [n] = ! f, ! j,n " calculated at scales 2j with the cubic spline
wavelet. Each up or down Dirac gives the amplitude of a positive or negative wavelet coefficient. At the top is the remaining coarse signal

approximation aJ [n] = ! f, " J,n " for J = # 5.

Coefficients d’ondelettes dj[n]

Wednesday, November 24, 2010

DŽmo reconstruction

FWT

IFWT

Wednesday, November 24, 2010

